Schur complements of selfadjoint Krein space operators
نویسندگان
چکیده
منابع مشابه
Quasi-uniformly Positive Operators in Krein Space
BRANKO CURGUS and BRANKO NAJMAN Deenitizable operators in Krein spaces have spectral properties similar to those of selfadjoint operators in Hilbert spaces. A suucient condition for deenitizability of a selfadjoint operator A with a nonempty resolvent set (A) in a Krein space (H; j ]) is the niteness of the number of negative squares of the form Axjy] (see 10, p. 11]). In this note we consider ...
متن کاملEla Schur Complements and Banachiewicz - Schur Forms
Through the matrix rank method, this paper gives necessary and sufficient conditions for a partitioned matrix to have generalized inverses with Banachiewicz-Schur forms. In addition, this paper investigates the idempotency of generalized Schur complements in a partitioned idempotent matrix.
متن کاملDefinitizable Extensions of Positive Symmetric Operators in a Krein Space
The Friedrichs extension and the Krein extension of a positive operator in a Krein space are characterized in terms of their spectral functions in a Krein space.
متن کاملSchur complements and Banachiewicz-Schur forms
Through the matrix rank method, this paper gives necessary and sufficient conditions for a partitioned matrix to have generalized inverses with Banachiewicz-Schur forms. In addition, this paper investigates the idempotency of generalized Schur complements in a partitioned idempotent matrix.
متن کاملSchur Complements and Determinant Inequalities
This paper is focused on the applications of Schur complements to determinant inequalities. It presents a monotonic characterization of Schur complements in the L öwner partial ordering sense such that a new proof of the Hadamard-Fischer-Koteljanski inequality is obtained. Meanwhile, it presents matrix identities and determinant inequalities involving positive semidefinite matrices and extends ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2019
ISSN: 0024-3795
DOI: 10.1016/j.laa.2019.07.019